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Abstract
A general buoyancy–drag model was recently proposed for describing all
evolving stages of Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM)
instabilities (Srebro et al 2003 Laser Part. Beams 21 347). We modify the
model and then analyse the dynamical growth of RT and RM mixing zones
using a spanwise homogeneous approximation, where two sides of the mixing
zones are treated as distinct and homogeneously mixed fluids in the spanwise
direction. The mixing zones are found to grow self-similarly when the ratio
between the average amplitudes Zi (i = 1: bubbles and i = 2: spikes) of
the mixing zones and the average wavelengths λi characterizing perturbations
remains constant, i.e., Zi/λi = b(A), where b(A) is a constant for a fixed
Atwood number A. For a constant acceleration g, Zi = αiAgt2, and Zi ∝ t θi

for an impulsive acceleration. With a simple form of b(A): b(A) = 1
1+A

, αi

and θi deduced agree with recent LEM (linear electric motor) data over the
experimental range of density ratio R. In addition, we find α2 ∼ α1R

Dα with
Dα = 0.37 and θ2 ∼ θ1R

Dθ with Dθ = 0.24. These agree well with recent
experiments. Furthermore, as A → 1, α2 → 0.5 and θ2 → 1 are derived,
consistent with recent theoretical predictions.

PACS numbers: 47.20.−k, 47.20.Ma

1. Introduction

The stability of hydrodynamic flows is a fundamental issue in fluid mechanics. Small
disturbances in a multifluid system produce buoyancy and shear-driven instabilities at an
interface between distinct fluids [1]. Rayleigh–Taylor (RT) instability is an important
hydrodynamic effect that occurs at a fluid interface where the density gradient and the
acceleration are oppositely directed. A related process takes place when shock waves pass
through an interface. This process is often referred to as the Richtmyer–Meshkov (RM)
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instability, similar to the well-known RT instability. The presence of RT and RM instabilities
has been found to be of importance to a variety of natural phenomena, including the explosion
of supernovae [2], magnetized plasmas [3, 4], magnetic confinement [5], solar magnetic layers
[6], inertial confinement fusion (ICF) [7], the acceleration of metal plates [8], underground
salt domes [9], volcanic islands [10], and so on. At early stage, the RT instability grows
exponentially with time and the RM instability grows only linearly. However, both RT and
RM instabilities develop into a turbulent mixing zone at late times when the amplitude of
perturbation becomes comparable to its wavelength. In the mixing zone, nonlinearities reduce
the growth in an asymmetric fashion [11] and there clearly appear bubbles of light fluid and
spikes of heavy fluid, each penetrating into the opposite fluid [12].

Turbulent mixing by RT and RM instabilities is a common and important phenomenon in
basic science and in engineering applications. A very fundamental issue is to determine the
mixing growth rate [13]. The growth of RT mixing regions depends mainly on the acceleration
g(t) and the density ratio R ≡ ρ2/ρ1. Here ρ2(ρ1) is the density of heavy (light) fluid. Both
the bubble (i = 1) and the spike (i = 2) amplitudes (Zi) grow self-similarly with some
acceleration distance ∝gt2 [14]. For a constant acceleration g,Zi = αiAgt2 [15, 16], where
A ≡ ρ2−ρ1

ρ2+ρ1
is the Atwood number. Rocket rig (RR) experiments [15] with immiscible fluids

obtained α1 = 0.06–0.07 for bubbles. Recent linear electric motor (LEM) experiments [17]
with immiscible fluids derived α1 = 0.05 ± 0.005 and α2/α1 ∼ RDα with Dα = 0.34 ± 0.05
over a wide range of density ratio. In contrast, the impulsive nature of RM instability does
not induce such a well-defined, self-similar law of fluid interpenetration. It is recognized
that bubble and spike amplitudes grow differently as Zi ∝ t θi [18]. The exponents θi are
thought to be universal, and experiments [17] found θ1 = 0.25 ± 0.05 and θ2/θ1 ∼ RDθ with
Dθ = 0.21 ± 0.05 for R < 50.

However, the problem of RT and RM mixing is far from being completely resolved [19].
There are many important issues such as turbulence spectrum, molecular diffusion [13, 20–
24], and so forth. Even for the mixing fronts (arrays of bubbles and spikes of the mixing zone
edges), there is still no unanimous description of the dynamical evolution and the growth rate
modelling is a general concern [14]. We will address buoyancy–drag models of the mixing
zone growth in this paper.

On the assumption that the outer and growing length scale defined by the mixing zone
width dominates the dynamics and that the influence of the small length scales within the
mixing zone can be ignored for the purpose of studying the bulk motion of the mixing layer,
it was believed that the buoyancy–drag model [25] based on the balance between inertial,
buoyancy and Newtonian drag forces [26] could give a proper description of the evolution of
the mixing zone boundaries. Since then, many articles [14, 17, 18, 27–31] on buoyancy–drag
models have appeared in the literatures. In these articles, a class of attempts were made to
model the growth of bubbles and spikes. These attempts include the coupled bubbles and
spikes model (Youngs’s model) [27], bubble competition models [18, 28] and the tube model
[29]. All these models have varying degrees of success in describing the observed variation
of αi and θi with density ratio (or Atwood number) on the LEM. But the model equations
proposed by Cheng et al [30] describe well the available experiments by assuming α1 is known
experimentally. Dimonte recently suggested a spanwise homogeneous buoyancy–drag model
[14] in which the two sides of a mixing zone are treated as distinct and homogeneously mixed
fluids in the spanwise direction. This provides a simple and intuitive technique for determining
the time-dependent, volume-averaged densities in the inertia and buoyancy terms.

Most recently, based on Layzer potential flow model at an infinite density ratio (A = 1)

[32, 33], Shvarts and co-workers [34] put forward a general buoyancy–drag model at every
A for describing all evolving stages of the RT and RM instabilities. The full spectrum of
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perturbations is identified with an equivalent single-mode perturbation characterized by its
wavelength λ. The buoyancy–drag equation is

[(CaE(t) + 1)ρi + (Ca + E(t))ρi ′]
dVi

dt
= (1 − E(t))(ρ2 − ρ1)g(t) − Cdρi ′

V 2
i

λ
(1)

for bubbles (i = 1) or spikes (i = 2) where i ′ = 3 − i and Vi = dZi

dt
. The parameter Ca = 2

and 1 for two-dimensional (2D) and three-dimensional (3D) perturbations, respectively. The
drag coefficient Cd = 6π (2D), 2π (3D). Note that the parameters Ca and Cd are not
phenomenological but are the results of the bubble competition picture and of the single-
mode Layzer model [31]. Also a single wavelength λ is used in this model because of the
assumption that the bubbles have the same periodicity as that of the spikes. In addition, the
amplitude dependence is introduced through the parameter E(t) = e−Ce kZ1 with Ce = 3
for 2D and 2 for 3D perturbations [34]. The wave-vector k = 2π/λ. The model describes
the growth of the mixing fronts for a multimode perturbation and for a general acceleration
profile. In contrast with previous buoyancy–drag models [14, 17, 18, 27–31], in which only
the asymptotic, i.e., self-similar, stage of RT and RM instabilities is described, equation (1)
can describe all instability stages including linear, nonlinear and asymptotic stages. In the
linear stage, λ is not changed with time. With the growth of the mixing zone, the wavelength
characterizing the perturbation grows. Upon entering the asymptotic stage, the mixing fronts
show self-similarity and the ratio between the average amplitude and the average wavelength
remains constant, i.e., Z1/λ = b(A), where b(A) is a constant for a specified Atwood number
A. In reality, as A → 1, this model coincides with the Layzer model for all instability stages,
and for the asymptotic stage, when kZ1 is large and E(t) → 0, it is equivalent to previous
buoyancy–drag model [30] with the drag coefficient Cd substituted by Cdb(A). Assuming
Z1 = Z2 and b(A) = 1.6

1+A
, Shvarts et al obtained the total mixing zone width, Z1 + Z2, for

constant acceleration RT instability, in agreement with experiments.
But the total mixing zone width cannot give the growing information of bubbles and

spikes separately. More than that, the mixing amplitudes are in general different, due to the
asymmetric behaviour, not as in [34] where Z1 = Z2 was presumed. In the present paper we
modify the general buoyancy–drag model described by equation (1). The single wavelength
λ is replaced by λi (λ1 is for bubbles and λ2 is for spikes). Then we analyse the dynamical
growth of RT and RM mixing zones using spanwise homogeneous approximation. The two
sides of a mixing zone are treated as distinct and homogeneously mixed fluids in the spanwise
direction. The growth rates of bubbles and spikes obtained agree with recent LEM data over
the experimental range of density ratio.

2. The model

Assuming the leading edge dynamics has little influence on the internal structure of the mixing
zone, the microscopic motions within the mixing zone are expected to be highly correlated
and the homogeneous flow approximation [35] may be applied. This allows the two sides of
the mixing zone (bubble and spike regions) to be treated as distinct and homogeneous mixed
fluids in the spanwise direction. Thus a simple piecewise linear vertical density profile [14]
can be used because inertia and buoyancy are volume integrated and insensitive to profile
details. The LEM experiments [17] support this point. Two regions are required because the
bubble (Z1) and spike (Z2) amplitudes are asymmetric. Consequently, the mass conservation
can be written as [14]

(ρ0 − ρ1)

(
Z2

2

)
− (ρ2 − ρ0)

(
Z1

2

)
= 0, (2)
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where ρ0 is the density at the initial interface location. From equation (2) we readily obtain

ρ0 = ρ1Z2 + ρ2Z1

Z2 + Z1
. (3)

The bubble and spike regions can be considered as different buoyant objects and we
construct the buoyancy–drag equations as

[(CaE(t) + 1)ρ0 + (Ca + E(t))ρ2]
dV1

dt
= (1 − E(t))(ρ2 − ρ0)g(t) − Cdρ2

V 2
1

λ1
(4)

for bubble region (between the interface and Z1) and

[(CaE(t) + 1)ρ0 + (Ca + E(t))ρ1]
dV2

dt
= (1 − E(t))(ρ0 − ρ1)g(t) − Cdρ1

V 2
2

λ2
(5)

for spike region (between the interface and Z2), respectively. In general, the periodicity of
bubbles is different from that of spikes. Hence we use two different wavelengths λ1 and
λ2 for bubbles and spikes in equations (4) and (5), different from [34]. In addition, here
E(t) = e−Ce kiZi .

In the asymptotic stage, bubbles and spikes grow self-similarly and Zi/λi should be a
constant. We assume Z1/λ1 = Z2/λ2 = b(A), where b(A) is a function of the Atwood
number A. For a specific A, b(A) is a constant. Thus the moving equations for bubble and
spike regions can be rewritten as

dV1

dt
= β1Ag(t) − C1

V 2
1

Z1
(6)

and
dV2

dt
= β2Ag(t) − C2

V 2
2

Z2
, (7)

where

β1 = (1 − E(t))(R + 1)χ

(CaE(t) + 1)(χ + R) + (Ca + E(t))R(χ + 1)
, (8)

β2 = (1 − E(t))(R + 1)

(CaE(t) + 1)(χ + R) + (Ca + E(t))(χ + 1)
, (9)

C1 = Cdb(A)R(χ + 1)

(CaE(t) + 1)(χ + R) + (Ca + E(t))R(χ + 1)
(10)

and

C2 = Cdb(A)(χ + 1)

(CaE(t) + 1)(χ + R) + (Ca + E(t))(χ + 1)
, (11)

with χ = Z2/Z1.

3. Comparison with experiments

3.1. Constant acceleration case

For a constant acceleration g, the bubbles and spikes grow self-similarly as

Z1 = α1Agt2 (12)

and

Z2 = α2Agt2, (13)
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Figure 1. Density ratio dependence of α2/α1.

respectively. Substituting Zi into equations (6) and (7), we get

αi = βi

2 + 4Ci

(14)

for vanishing initial conditions, i.e., Vi0 = Zi0 = 0. Therefore,

α2

α1
= χ = β2

β1

2 + 4C1

2 + 4C2
. (15)

Substituting equations (8)–(11) into equation (15), we get a self-consistent equation:

χ = 1

χ

2(CaE(t) + 1)(χ + R) + 2(Ca + E(t))R(χ + 1) + 4Cdb(A)R(χ + 1)

2(CaE(t) + 1)(χ + R) + 2(Ca + E(t))(χ + 1) + 4Cdb(A)(χ + 1)
, (16)

which can be solved recursively.
From equation (16) it is easily derived that χ = 1 as R → 1 (i.e., A → 0). This is

because the perturbations are symmetric as A → 0. With a simple form of constant b(A):
b(A) = 1

1+A
, we obtain the numerical solutions of χ for different values of density ratio R, as

shown in figure 1. It should be noted that 3D values of the parameters such as Ca,Cd and Ce

are utilized in our calculations in order to compare with 3D experiments. Our results are found
in agreement with recent LEM data [17] over the experimental range of R. Furthermore, we fit
our results to the power-law form: RDα , and find the exponent Dα = 0.37, in good agreement
with experiments [17]. For a comparison, in figure 1 we give the results obtained by the GSS
hypothesis as well. GSS [36] supposed that the centre-of-mass (COM) displacement of mixing
zone, LCOM, is much smaller than the total mixing zone width. As a consequence, the COM
displacement can be treated statically, i.e., LCOM = 0, compared to the mixing zone width.
This hypothesis is physically plausible and depends on the self-similar growth of mixing zone.
Our results support the GSS hypothesis for small density ratios (R < 3). But for larger density
ratios, our results obviously deviate from that of the GSS hypothesis, consistent with [30].

To see clearly the growth of bubbles and spikes, we present the variation of buoyancy
βi and drag Ci coefficients with Atwood number in figures 2 and 3, respectively. For small
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Figure 3. The variation of drag coefficients Ci with Atwood number.

values of Atwood number A, the perturbations are symmetric, i.e., χ ∼ 1, thus the bubble and
spike factors are similar as A → 0, i.e., βi ∼ 0.5, as seen in figure 2, and C1 = C2, as seen in
figure 3. When A → 1, β2 → 1 is derived. This is important because spikes require β2 = 1
to free fall at A = 1. In addition, it is found in figure 3 that C1 weakly depends on A, but C2

declines with A because the spikes penetrate an ever more tenuous fluid. Besides, C1 is found
to be always larger than C2 and C1 � C2 for R � 1, indicating that Z1 may be the dominant
length scale in the denominator of drag term for R � 1. This fact is consistent with Youngs’s
model [27].

Substituting the numerical βi and Ci into equation (14), we get the growth rates αi , as
shown in figure 4, where we present the variation of αi with Atwood number. α1 is found
insensitive to A, but a power-law increase with A is found in α2, coincident with the results
in figure 1. The obtained αi are generally in agreement with recent LEM experiments [17].
Also, as A → 1, α2 → 0.5 is found. This agrees well with recent theoretical predictions [30]
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Figure 4. The variation of αi with Atwood number.

and is reasonable in physics due to the fact that spikes fall freely when A = 1. But it is worth
noting that α1 is underestimated for small values of Atwood number. The underestimation
may be due to the fact that the homogeneous approximation smoothes out the variance of
bubbles [37].

3.2. Impulsive acceleration case

An impulsive acceleration is important because the drag term can be isolated to investigate.
In RM mixing, the acceleration profile is

g(t) = Uδ(t), (17)

where U is the velocity jump induced in the fluids by the impulsive acceleration. For t > 0,
equations (4) and (5) reduce to

[(CaE(t) + 1)ρ0 + (Ca + E(t))ρ2]
dV1

dt
= −Cdρ2

V 2
1

λ1
(18)

for bubbles and

[(CaE(t) + 1)ρ0 + (Ca + E(t))ρ1]
dV2

dt
= −Cdρ1

V 2
2

λ2
(19)

for spikes, respectively. Then we get

dV1

dt
= −C1

V 2
1

Z1
(20)

and
dV2

dt
= −C2

V 2
2

Z2
, (21)

where C1 and C2 have the forms given by equations (10) and (11), respectively.
The RM bubble and spike amplitudes are supposed to have the scaling forms as

Z1 = α1t
θ1 (22)

and

Z2 = α2t
θ2 . (23)
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Figure 5. The variation of θi with Atwood number.

Here, the growth coefficients of RM mixing are assumed as that of RT mixing for simplicity.
Substituting equations (22) and (23) into equations (20) and (21), respectively, we obtain the
exponents

θi = 1

1 + Ci

. (24)

With Ci given by equations (10) and (11), we derive

θ1 = 1

1 + Cdb(A)R(χ+1)

(CaE(t)+1)(χ+R)+(Ca+E(t))R(χ+1)

(25)

and

θ2 = 1

1 + Cdb(A)(χ+1)

(CaE(t)+1)(χ+R)+(Ca+E(t))(χ+1)

. (26)

From equation (26), it is found that θ2 → 1 as A → 1, consistent with Cheng’s prediction
[30]. In addition, comparing equations (25) with (26), we find that θ1 meets with θ2 at A = 0,
which is a result of symmetric perturbations as A → 0. Employing the results for χ and
the form of b(A) in the constant acceleration case, we numerically obtain the exponents θi .
Figure 5 shows the variation of θi with Atwood number. It is found that θ1 is almost constant
and in good agreement with LEM experimental data [17]. But θ2 is found to increase with
A in a power-law form. Detailed analysis tells that θ2 ∼ θ1R

Dθ , with Dθ = 0.24, in good
agreement with recent LEM experiments [17], as also seen in figure 6, where the density ratio
dependence of θ2/θ1 is presented.

4. Summary and discussion

We have modified the general buoyancy–drag model and analysed the dynamical growth of
RT and RM mixing zones using spanwise homogeneous approximation. The mixing zones
have been found to grow self-similarly when the ratio between the average amplitudes of
mixing zones and the average wavelengths characterizing perturbation keeps constant b(A)

for a specific Atwood number. The mixing zone amplitudes Zi = αiAgt2 for a constant
acceleration, but Zi ∼ t θi for an impulsive acceleration. With a simple form of constant
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Figure 6. Density ratio dependence of θ2/θ1.

b(A): b(A) = 1
1+A

, the obtained αi and θi are generally in agreement with recent LEM
data over the experimental range of density ratio R. Also we have found α2 ∼ α1R

Dα with
Dα = 0.37 and θ2 ∼ θ1R

Dθ with Dθ = 0.24. These agree well with recent experiments. In
particular, we have derived α2 → 0.5 and θ2 → 1 as A → 1, consistent with recent theoretical
predictions.

It should be emphasized that the influence of initial conditions has not been considered
in our analysis. Consideration of the effects of initial conditions will improve the agreement
between theoretical results and experiments [38]. Also the mixing zones include complex
structures of all sizes, down to the molecular level. ‘Homogeneous approximation’ only
provides an averaging description of the mixing zones. As pointed out in [14], the
‘homogeneous approximation’ describes only the self-similar phase and bypasses the initial
small amplitude linear phase. A more accurate description is needed to include the initial
linear terms, demixing and phase reversal [34].
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